Separated design of encoder and controller for networked linear quadratic optimal control

نویسندگان

  • Maben Rabi
  • Chithrupa Ramesh
  • Karl Henrik Johansson
چکیده

For a networked control system, we consider the problem of encoder and controller design. We study a discrete-time linear plant with a finite horizon performance cost, comprising of a quadratic function of the states and controls, and an additive communication cost. We study separation in design of the encoder and controller, along with related closed-loop properties such as the dual effect and certainty equivalence. We consider three basic formats for encoder outputs: quantized samples, real-valued samples at event-triggered times, and real-valued samples over additive noise channels. If the controller and encoder are dynamic, then we show that the performance cost is minimized by a separated design: the controls are updated at each time instant as per a certainty equivalence law, and the encoder is chosen to minimize an aggregate quadratic distortion of the estimation error. This separation is shown to hold even though a dual effect is present in the closed-loop system. We also show that this separated design need not be optimal when the controller or encoder are to be chosen from within restricted classes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

Optimal discrete-time control of robot manipulators in repetitive tasks

Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...

متن کامل

Enhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics

Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...

متن کامل

Integrated Primary Controller Design in AC Microgrids Using Optimal Tracking Control Technique

In this paper, an optimal integrated inner controller is designed for the microgrid primary control level. The main task of the primary control level is to maintain stability and proper power sharing in microgrids. Non-optimal controllers have been generally used to design the inner controller in this level in the majority of researches. On the other hand, accurate and complete models of microg...

متن کامل

Designinga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout

This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016